Club Drugs: They’re All the Rave: A Review of Use and Abuse: Effects of MDMA, Methamphetamine, and Gamma-Hydroxy-Butyrate (GHB) on Memory

Firas H. Kobeissy, MS. Departments of Psychiatry and Neuroscience, Center for Traumatic Brain injury Studies, Center of Neuroproteomics and Biomarkers Research, McKnight Brain institute, University of Florida, Gainesville

Kevin K.W. Wang, PhD, Departments of Psychiatry and Neuroscience, Center for Traumatic Brain Injury Studies, Center of Neuroproteomics and Biomarkers Research, McKnight Brain institute, University of Florida, Gainesville

Julie M. Demetree, BS, interdisciplinary College of Medicine, McKnight Brain institute, University of Florida, Gainesville

Andrew K. Ottens, PhD, Department of Neuroscience, Center for Traumatic Brain Injury Studies, Center of Neuroproteomics and Biomarkers Research, McKnight Brain institute, University of Florida, Gainesville

Zhiqun Zhang, MD, Department of Neuroscience, Center for Traumatic Brain Injury Studies, Center of Neuroproteomics and Biomarkers Research, McKnight Brain institute, University of Florida, Gainesville

Matthew Warren, BS, Departments of Psychiatry and Neuroscience, Interdisciplinary College of Medicine, Center for traumatic Brain Injury Studies, McKnight Brain institute, University of Florida, Gainesville

Mark S. Gold, MD, Distinguished Professor & Chief, Departments of Psychiatry, Neuroscience, Anesthesiology, Community Health & Family Medicine, Division of Addiction Medicine, McKnight Brain institute, Gainesville, Florida

The Amphetamine Epidemic

In 2005, the National Center on Addiction and Substance Abuse (NCASA) reported an alarming increase (212%) in the abuse of controlled prescribed drugs among the 12- to 17-year-old age group from 1993-2003. Among these abused drugs are the amphetamines, specifically the illicit drugs methamphetamine (meth) and structurally related 3,4-methylenedioxy methamphetamine (MDMA). Meth and MDMA drug abuse is a growing epidemic worldwide. According to one study, 6.2% of high school seniors used meth in 2004 (National Institute on Drug Abuse). An estimated 35 million people regularly use amphetamines, compared to 15 million users of cocaine (Rassool, Gonzales, & Bretten, 2002; Rawson et al. 2002; Thompson, Hayashi. & Simon. 2004). Art 87% increase in meth-related arrests was observed over the past 3 years at 500 law enforcement agencies across 45 states; law enforcers consider meth to be the most significant drug problem in America as printed recently in the New York Times (Zernike, 2005). The United Nations International Drug Control (UNIDC) estimated that there are 250 million abusers of psychoactive
abusers of psychoactive drugs worldwide posing a significant public health problem (Rawson et al., 2002). The statistics described above demonstrate the widespread effects that such abused drugs can impose on our country community and society. Along the same line, recent publications have discussed the role of meth and MDMA in causing different psychobiological effects leading to memory deficits and cognitive impairment, which will be discussed later (Roques & Noble, 2003).

Methamphetamine as a Club Drug

Meth (also known as ice, crank, speed, crystal meth) is an addictive psycho stimulant belonging to the amphetamine family, which was originally introduced as an appetite suppressant and a treatment for attention deficit disorder (Robbins & Everitt, 1999; Sulzer, Sonders, Poulsen, & Galli, 2005; Tellier, 2002). Meth was used during WWII by Japanese kamikaze pilots for energy and bravery (Taylor, 2005). Meth can also be useful in treating narcolepsy due to the energy boost it provides (Goetz, 2003). It is the most widely spread illicit drug because it is easy to prepare and cheap to obtain. Meth can be smoked, inhaled, or injected leading to a variety of social behaviors with a feeling of euphoria and increased self-esteem, with the effects lasting up to 15 hours. Amphetamines are sympathomemetics that act by increasing the amount of dopamine, nor epinephrine, and epinephrine neurotransmitters available in the brain. As a result, the user may experience a heightened sense of awareness and paranoia. The average meth dose may cause the user to experience mydriasis (dilated pupils), hypertension, tachycardia (increased heart rate), and hyperthermia (Moore & Jefferson, 1996). Other indicators of meth use include auditory hallucination, visual hallucinations often involving bugs, agitation, insomnia, anxiety, nausea, and vomiting. Upon meth overdose, psychosis, myocardial infarction, seizures, and even death may occur.

Methamphetamine Neurotoxicity

Meth is a psychostimulant that is known to mediate addictive behavior by acting on the monoaminergic system leading to an increase in the dopamine (DA) and serotonin (5-UT) levels in certain brain regions (Fleckenstein, Gibb, & Hanson, 2000; Robbins & Everitt, 1999). Several human and non-human primate studies have indicated that the meth monoaminergic effect can lead to neurotoxic effects, which are associated with neurocognitive impairments involving memory deficits (nonspatial and working memory) (Gonzalez et al., 2004; Schroder, O’Dell, & Marshall, 2003). Long-term meth use induces dopaminergic and serotonergic axonal terminal damage that is coupled with neuronal degeneration of specific population of neocortical neurons (Schroder et al., 2003), and is attributed to the lipophilic nature of meth, which facilitates crossing of the blood brain barrier (BBB) and access to different brain regions (Nordahl, Salo, & Leamon, 2003). Upon entering the monoaminergic system, meth binds to the plasmalemal dopamine transporter (DAT) and alters its function by blocking the re-uptake of DA and overloading the synapse (Baucum, Rau, Riddle, Hanson, & Fleckenstein, 2004; Robbins & Everitt, 1999). Meth also diffuses via the DAT into the neuronal terminal where it acts as a substrate for a number of neuronal structures, including the dopamine vesicular transporter (VMAT) that contributes to increased cytosolic DA. Afterward, neuronal function is altered leading to a reduction in DAT activity and the dysfunction of tyrosine hydroxylase (TH) and dopamine vesicular transporter (Nordahl et al., 2003). Furthermore, the oxidizing environment of the cytosol can lead to DA oxidation.
leading to the generation of nitrogen, oxygen, and metabolic reactive species that trigger
dopaminergic terminal degeneration and subsequently cause necrotic cell death (Baucum et al.,
2004; Davidson, Gonzalez, Gow, Lee, & Ellinwood, 2001). In addition, it has been shown that
meth can diffuse into other neuronal organelles, such as the mitochondria where it causes
perturbation in the mitochondrial electron gradient leading to mitochondrial mediated apoptotic
cell death. Oxidative stress mediated injury is exacerbated by increased glutamate levels, which
in turn can activate NMDA receptors producing more reactive oxygen species leading toward
excitotoxicity.

Neuronal degeneration is not confined to the monoaminergic system but can include other
neocortical cells in a dopamine independent pathway. In a study by Cadet, Ordonez, and
Ordonez (1997), it was demonstrated that an immortalized neuronal cell line when treated with
meth exhibited an apoptotic cell death phenotype. These results were strengthened by other
findings showing that neocortical cells were killed by meth treatment and showed increased
expression of apoptotic markers and apoptotic family proteins (Stumm et al., W99). Newly
published work from our research has shown that an acute meth neurotoxic regimen (4,40
mg/kg) in rats causes neuronal injury in both the cortex and the hippocampus mediated by
calpain and caspase activation that is suggestive of neuronal cell death (Warren et al., in press).

Neuropsychobiological Effect of Methamphetamine on Memory
Deficits and Cognition

Coupled to meth-related toxicity observed in DA neurons, it has been shown using positron
emission test (PET) imaging that DA reduction is correlated with memory deficits observed in
heavy meth users (Fleckenstein et al., 2000; Hanson, Rau, & Fleckenstein, 2004). Daberkow,
Kesner, and Keefe (2005) further evaluated meth induced memory deficits in rats. Meth was
administered at 2-hour intervals for 5 hours; then 10 days later, the rats were tested using a radial
arm maze with free access for 5 days. Three weeks after exposure to meth, the rats were trained
in the maze for 5 days using food rewards. Afterward, the maze pattern was changed. Meth
exposed rats took longer to complete the maze and spent more time in its center. These rats also
made fewer direct moves on the last day. This shows a likely decrease in procedural memory in
meth-exposed rats. The meth-exposed rats had decreased DA and SHT in the striatum, an area of
the brain involved with cognition. The more the DA was depleted, the fewer direct moves were
made by the rats, indicating that DA in the striatum may be at least partially responsible for
procedural learning.

To further explain meth-mediated memory impairment, Schroder et al. (2003) demonstrated a
novel approach to evaluate the neurotoxic effects of meth, in which treated rats were evaluated in
nonspatial memory (i.e., object recognition) and spatial memory (i.e. Morris water maze)
hippocampal associated tasks. Rats were exposed to meth for one day and presented with a novel
and a familiar object. The amount of time spent investigating the new object compared with the
time spent on the familiar object is indicative of the rats’ memory of the old object. Meth-treated
rats consistently had poorer memory of the old object at 90 minutes, 24 hours, one week, and
three weeks post meth exposure. In contrast, the results of the Morris water maze spatial memory
test showed that at one week post-treatment, there was
no difference between the meth-exposed and control groups; however, after sacrifice it was found that there was a significant decrease in DAT and serotonin transporter (SERI) in the striatum and hippocampus, respectively. One major finding of this research is that a single meth treatment can cause long lasting selective hippocampal dependant memory deficits attributed to damage of the hippocampus monoaminergic terminals (Schroder et al., 2003).

Some research on meth has been performed in humans. Thompson et al (2004) utilized magnetic resonance imaging (MRI) to evaluate different brain alterations associated with chronic meth abuse in human subjects. In brief, 22 human subjects with a chronic history of meth abuse were subjected to M~ and compared to healthy subjects.

Interestingly, this study revealed three important findings related to chronic meth abuse: (1) Cortical maps revealed severe gray matter deficits in three separate cortical areas in the meth abusers compared to the control group, (2) Meth subjects showed significant hippocampal volume reduction (7.8% decrease) compared to the control subjects, and (3) hippocampal mapping was correlated with memory performance evaluated via word recall test. It was shown that chronic meth abusers caused selective cerebral damage contributing to the memory deficits observed (Blakeslee, 2004; Thompson et al., 2004).

MDMA

MDMA also know, as ecstasy, XTC, E, and X, is one of the most commonly used and abused dub drugs. Ecstasy, as the name suggests, is taken to induce euphoria, a sense of well-being, and a good mood, with its effects lasting for 4 hours (DEA, 2001). At $20 to $30 dollars per dose, MDMA is a profitable industry, with 4% of American high school seniors reported to have used the drug in 2004, down from an all-time high of 9.2% in 2001 (National Institute on Drug Abuse, 2004).

Signs of MDMA Intoxication

Like other club drugs, MDMA has physiological consequences other than those for which the drug is taken. MDMA can cause tachycardia, hypertension, and hyperthermia, which can lead to heat stroke (DEA, 2001; Moore & Jefferson, 1996; National Institute on Drug Abuse, 2005). Deaths have occurred due to body temperatures reaching 109°F while under the influence of MDMA. As a result, many clubs have cool down rooms or spray patrons with cool water (DEA, 2001). Bruxism, clenching of teeth, may occur, which is why it is common for ravers to chew gum or use pacifiers (DEA, 2001; Moore & Jefferson, 1996). MDMA also produces increased energy levels, which allows users to attend extended parties.

MDMA and Memory

Research has provided insight into the neurotoxicity caused by MDMA especially in regards to the serotonergic system (Obrocki et al., 2002). A significant amount of research has been done to study the long-term effects of MDMA on cognition. A pilot study of MDMA users found 5-HT injury in the occipital cortex. It also found a relationship between memory deficits and the amount of neuronal injury (Reneman, Booij, Schmand, Van Der Brink, & Gunning, 2000). In order to evaluate
the effects of long-term intermittent use as is common among MDMA users, one study administered MDMA in this fashion to rats and then tested their working memory and anxiety-like behavior one week later. This study found that there was a significant decrease in working memory as seen in novel object recognition tests in MDMA-exposed rats. The study also found that there was a decreased anxiety-like behavior as evident by increased open arm exploration in an elevated maze test, which should induce natural anxiety. They also noted a reduction in serotonin transporters in the hippocampus, an area of the brain involved in memory. Decreased SERF density was related to decreased anxiety-like behaviors (Piper & Meyer, 2004). An additional study compound cognition in heavy MDMA users with moderate MDMA users and non-user& There was increased reaction time with more MDMA use. Also, memory span was larger in non-users than users (Verkes et al., 2001).

Gamma-Hydroxy-Butyrate (GHB)

Gamma-hydroxy-butyrate (GHB) is often termed a date rape thug due to its sedative and amnestic qualities; however, it has become an increasingly popular drug of abuse among American teenagers. It is classified as a club drug due to its popularity at raves. The annual prevalence of GHB use in 2004 was estimated to be 2% among high school seniors (National Institute on Drug Abuse, 2004). GHB, whose pseudonyms include G, liquid ecstasy, Georgia Home Boy, and fantasy, just to name a few, is a naturally occurring short chain fatty acid in human brains (Snead & Gibson, 2005). GHB’s popularity may relate to its motto “euphoria without the hangover” (Ford, 2001). CHB is intentionally taken due to its effects of “mild euphoria, disinhibition, and increased libido” (Jacobson & Jacobson, 2001). GHB is also marketed as a supplement for body builders (Cecil, Goldman, Ausiello, 2004).

Signs of GHB Intoxication

GHB intoxication may present in a variety of behaviors. The complexity of diagnosis of GHB intoxication is magnified due to the frequency of co-intoxication, especially with alcohol (Zvosec & Smith, 2005). Some indications of GHB intoxication may include ataxia (impaired gait) (Cecil et al., 2004), impaired judgment, and nystagmus (a rapid, jerking movement of the eyeball) (Jacobson & Jacobson, 2001). Although GHB is often thought of as sedating, Zvosec and Smith (2005) found that 64% of GHB emergency department visits presented with agitation and sometimes aggression. They witnessed bizarre behavior such as “summersaults,” “snapping lips,” “hugging trees,” self-injurious behavior as well as “Zombie-like” behavior (Zvosec & Smith, 2005). GHB is a central nervous system depressant, and as a result, it can produce respiratory depression, somnolence, and coma (Cecil et al., 2004). One clinical finding that can help in forming suspicion of GHB intoxication is coma that lasts only 2 to 3 hours with rapid recovery (Ford, 2001). GHB intoxication can cause clonus (rapid contractions of a muscle) and seizure activity, though the mechanism is not fully understood (Ford, 2001).

GHB and Its Effects on Cognition

The amount of literature available regarding the effects of GHB on cognition is limited (an online search of the National Institutes of Health Pub-Med for “GHB and Memory” yielded only six results, while the search for “MDMA and Memory”
yielded 112 results). In one study by Sircar and Basak (2004), rats were injected with three doses of GHB for 5 consecutive days, after which their spatial learning and memory was tested with a water maze test, and the number of NMDA GABA receptors were counted. The study showed that the rats treated with GHB had significant difficulty with spatial learning and memory, and the difficulty with spatial memory was correlated with the down-regulation of NMDA receptors in the frontal cortex (Sircar & Basak, 2004).

Counter intuitively, some studies have found that GHB can act as a neuroprotectant when administered after an ischemic insult by diminishing cognitive impairment (Ottani et al., 2004; Stumm et al., 1999). Clearly further research regarding the long term cognitive effects of CUB abuse is needed.

Conclusion

As evident from the rise of club drug usage, METH, MDMA, and GHB are a considerable problem among American teenagers. These drugs increase the likelihood of neurotoxic events, which may be discernible or quite subtle. Brain science tells us that cells are lost, but the young person may appear normal. Age-related memory decline may occur earlier and be more severe in people with pre-existing drug use as a result of hippocampal and other cell loss. Similarly, patients may have cognitive and behavioral effects years later when they are under stress or when aging, which become manifest because of the lost cell reserve. While this is conjecture, we know that cells, once lost, are lost forever. It is unlikely that the brain could be prepared by a higher being or evolution for drug drugs and cell loss to the extent we see in laboratory animals given doses of club drugs used by college students and even high school students whose brains are not yet developed. No one suggests that these drugs are memory medications or good for memory.

The main question is how much function is lost and how much of a decrement from baseline is seen. The search for euphoria, free love, and heightened energy levels comes with risky side effects including neuronal loss and even death. Because of ethical standards, it is unrealistic to study the effects of repeated or large doses of drugs on the human brain. We also cannot study the effects of multiple drugs taken at the same time. While this is the typical pattern of use among the young, we have limited ability to prospectively study them and rather, retrospectively report of the effects of experimentation, poisoning, or predators. In many instances, what we have learned comes from emergencies, addiction treatment referrals, and case reports of self-intoxication. Clearly, all medications must be used safely and under physicians’ instructions. Drugs of abuse are manufactured by amateur chemists or brought from foreign countries, and use patterns are lost to the current users. If one dose does not work with the desired effect, another and another are taken. Club drugs have been linked to traffic accidents, increased chance of medical emergency, or death as well as other morbidities.

The diversity of meth and MDMA research supports their role in neurotoxicity and cognitive impairment; GHB has only limited evidence for involvement in neurotoxicity and long-term cognitive deficits, but it can clearly cause dependence and abstinence including a fatal syndrome that looks like alcoholic delirium tremens. More research is necessary to determine the extent of its effects and safe window for therapeutics. Perhaps as more basic research is conducted and reported and
Information regarding the extensive risks of dub drugs becomes available in popular media; their use among America’s youth will decline.

Acknowledgement

Thanks to Jo Sizemore, MEd, in Counseling and Personnel Services from the University of Southern Mississippi.

References

The National Center on Addiction and Substance Abuse at Columbia University. (2005, July). *Under the counter: The diversion and abuse of controlled prescription drugs in the U.S.*

122

Law Enforcement Executive Forum • 2005• 5(5)

Firas H. Kobeissy was born in Lebanon, Beirut. He graduated from The American University of Beirut with a master’s degree in immunology. He also has a master’s in molecular genetics from Bowling Green State University. He is currently a PhD candidate at the University of Florida in the area of neuroscience and psychiatry with a focus on drug abuse and traumatic brain injury and proteomics working under the supervision of Dr. Kevin K. Wang and Dr. Mark S. Gold. He is the co-author of several articles and reviews and a book chapter along with a pending patent. He is a member of the Center for Traumatic Brain Injury at the McKnight Brain Institute at the University of Florida.

Kevin K. W. Wang, PhD, is an associate professor of psychiatry and neuroscience at University of Florida, Gainesville. Dr. Wang obtained his PhD in pharmaceutical sciences with distinction from the University of British Columbia in Vancouver in 1989. He is internationally recognized for his original contributions to the field of CNS disorders linked proteolytic enzymes. He joined Parke-Davis Pharmaceutical Research in Ann Arbor, Michigan, in 1991, and following the company’s merger with Pfizer, Inc. (2000), he became group leader of CNS Therapeutics and chaired the multidisciplinary CNS new targets team. He has published more than 100 peer-reviewed papers, reviews, and book chapters and co-authored eight U.S. patents. He co-edited a book entitled Ca/pain: The Pharmacology and Toxicology of a Calcium-Dependent Protease in 2000. He also serves as associate director of the Center for Traumatic Brain Injury Studies and director of the Center of Neuroproteomics and Biomarkers Research at University of Florida.

Julie Demetree was born in Bradenton, Florida. Ms. Demetree is now a 4th year medical student at the University of Florida. She graduated with honors from the University of Florida in 2002 with a BS in psychology. She is a member...
of Golden Key and Phi Beta Kappa. She plans on pursuing a career in child and adolescent psychiatry.

Andrew K. Ottens, PhD, is associate director at the Center for Neuroproteomics and Biomarkers Research; research associate, Center for Traumatic Brain Injury Studies; and assistant research professor of neuroscience. Dr. Ottens received his PhD from the Department of Chemistry at the University of Florida in 2003 after receiving the distinguished Roger C. and Jo Bates Scholar award for excellence in analytical chemistry in 2002. He then joined the Center for Traumatic Brain Injury Studies and the Department of Neuroscience in 2003, where he heads up traumatic brain injury proteomics efforts, applying his expertise in quantitative instrumental analysis. In 2004, he became the Scientific Director of the Neuroproteomics Bioanalytical Laboratory of the Center for Neuroproteomics and Biomarkers Research (CNBR), where he expanded neuroproteomics efforts into additional neurological disorders and abuse conditions. He became associate director of the CNBR in 2005, continuing to establish its prominence around the world. He has authored more than 10 manuscripts and book chapters, has two pending U.S. patents, and is an active interdisciplinary collaborator with members of the Departments of Neuroscience, Psychiatry Pathology, Computer and Information Science, Engineering, Biomedical Engineering, and Physiological Sciences.

Zhiqun Zhang was born in China. She graduated from Nanjing University in 1997 with a bachelor's degree in biological sciences. In 1999, she earned her MD with honor at Nanjing University. Then, she continued her residency at First Affinity Hospital of Suzhou Medical School between 1999 to 2002. Now, she is pursuing her PhD at the University of Florida.

Matthew Warren graduated from the University of North Carolina at Chapel Hill with highest honors and highest distinction studying biochemistry and statistics. He is currently an MD/PhD student at the University of Florida studying psychiatry and neuroscience.

Mark S. Gold, MD, is a distinguished professor at the University Of Florida College Of Medicine’s Brain Institute, Departments of Psychiatry, Neuroscience, Anesthesiology, and Community Health & Family Medicine. He is also vice chair for Education and thief, Division of Addiction Medicine. Dr. Gold is a Distinguished Fellow of the American Psychiatric Association (2003), University of Florida College of Medicine 2003 Exemplary Teacher, Underrepresented Minority Mentor (2004), Teacher of the Year, researcher, and inventor. He has worked for 30 years to develop models for understanding the effects of tobacco and other drugs on the brain and behavior, and he has developed new treatments for addicts.

Dr. Gold maybe best known for writing over 900 medical articles, chapters, and abstracts in journals for health professionals on a wide variety of psychiatric research subjects and authoring 12 professional books including practice guidelines, ASAM core competencies, and medical text books for primary care professionals. He is the author of 15 general audience books.